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White matter hyperintensities (WMHs) are brain white matter lesions that are hyperintense on fluid attenuated
inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH volumes have been associated
with Alzheimer’s disease (AD) and with cognitive decline. However, the relationship between WMH volumes and
cross-sectional cognitive measures has been inconsistent. We hypothesize that this inconsistency may arise from
1) the presence of AD-specific neuropathology that may obscure any WMH effects on cognition, and 2) varying
criteria for creating a WMH segmentation. Manual and automated programs are typically used to determine
segmentation boundaries, but criteria for those boundaries can differ. It remains unclear whether WMH volumes
are associated with cognitive deficits, and which segmentation criteria influence the relationships between WMH
volumes and clinical outcomes.

In a sample of 260 non-demented participants (ages 55–90, 141 males, 119 females) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), we compared the performance of five WMH segmentation methods, by
relating the WMH volumes derived using each method to both clinical diagnosis and composite measures of
executive function and memory. To separate WMH effects on cognition from effects related to AD-specific pro-
cesses, we performed analyses separately in people with and without abnormal cerebrospinal fluid amyloid levels.

WMH volume estimates that excluded more diffuse, lower-intensity lesions were more strongly correlated with
clinical diagnosis and cognitive performance, and only in those without abnormal amyloid levels. These findings
may inform best practices for WMH segmentation, and suggest that AD neuropathology may mask WMH effects
on clinical diagnosis and cognition.
1. Introduction

White matter hyperintensities (WMHs) in the brain white matter are
lesions having a signal intensity brighter than the surrounding white
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(AD), small vessel disease, and cognitive decline, making them ameasure
of clinical interest (Brickman et al., 2009; Prins and Scheltens, 2015).

AD-specific processes may influence the observed effect of WMHs on
clinical diagnosis and cognition. In cross-sectional data, amyloid plaque
counts do not correlate as strongly with cognition as neurofibrillary
tangle counts (Wilcock and Esiri, 1982). Still the presence of amyloid
positivity in cognitively intact older adults is considered to be a sign of
preclinical AD (Hane et al., 2017), and is associated with faster longi-
tudinal decline in cognitive function compared to that seen in
amyloid-negative older adults (Mortamais et al., 2017). WMHs and am-
yloid deposition in AD may influence one another (Grimmer et al., 2012;
Scott et al., 2015, 2016), and both may contribute to cognitive impair-
ment (Provenzano et al., 2013; Gordon et al., 2015). We used amyloid
positivity as a surrogate for AD-specific processes, which may influence
cognition independently of, and together with, WMHs. We studied the
effect of WMHs on cognition by evaluating the relationship separately in
those who were amyloid positive (Aβþ) or negative (Aβ-) (Shaw et al.,
2009). We hypothesized that the relationship betweenWMH volume and
cognition would be stronger in those who were Aβ- (and thus had less
cognitive variability added by AD-related processes) compared to those
who were Aβþ.

Larger WMH volumes have been associated with both decreased
global cognitive function (Au et al., 2006; Frisoni et al., 2007; Klop-
penborg et al., 2014) and domain specific-cognitive impairment,
including executive function (Gunning-Dixon and Raz, 2000; Smith et al.,
2011; Lampe et al., 2017; Aljondi et al., 2018) and memory (de Groot
et al., 2000; Gunning-Dixon and Raz, 2000; Smith et al., 2011; Lampe
et al., 2017). However, results vary among studies that have evaluated
the WMHs to cognition relationship. This variability may arise from
differences in the classification of lesion boundaries in segmentation
methods (Smart et al., 2011; Caligiuri et al., 2015; Wang et al., 2015;
Dadar et al., 2017), which may capture physiologically different com-
ponents (Haller et al., 2013).

Manual segmentation - the gold standard when comparing automated
methods - is time consuming, requiring multiple raters, and training to
establish intra-rater and inter-rater reliability. Further, expert reviewers
in different laboratories may use different visual rating scales or may
disagree about what constitutes a clinically-relevant WMH boundary or
location. Therefore, acceptable intra-study reliability may not translate
into high reliability between methods or studies (Grimaud et al., 1996;
Mantyla et al., 1997; Kapeller et al., 2003; Prins et al., 2004; Yoshita
et al., 2005). Often, limited information is provided in publications to
describe the criteria used for defining manual segmentations - such as
whether to include minimally hyperintense lesions, or lighter ‘halos’
around larger higher-intensity lesions. This makes ground truth and
replication across studies difficult (Firbank et al., 2004; Gibson et al.,
2010; Smart et al., 2011; Iorio et al., 2013; Griffanti et al., 2018). It is
unclear which WMH manual segmentation criteria result in the most
clinically-relevant lesion assessments (van Straaten et al., 2006).

We calculated WMH volumes using the default options for five
Table 1
Demographic features of the sample analyzed.

Demographic Aβ-

Controls MCI Total

N 54 89 143
Age (years) 73.07 � 5.53* 70.00 � 7.29* 71.16 � 6.83**
Sex (M/F) 32/22 46/43 78/65
Education
(years)
rowhead

16.81� 2.60 16.01� 2.47 16.31� 2.54

ICV (mm3) 1.46� 106� 1.37� 105 1.46� 106� 1.32� 105 1.46� 106� 1.33�

Shown as mean� standard deviation. We evaluated group level differences, between a
age, years of education, and intracranial volume (ICV), using Welch’s two-tailed t-te
* Significantly different between controls and MCI within Aβ group, p< 0.05.
** Significantly different between Aβþ and Aβ- participants, p< 0.05.
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automated WMH segmentation algorithms. Our goal was not to evaluate
the software packages themselves, all of which can be optimized, but
rather to create a range of typical segmentations that allowed us to
identify which features strengthened the sensitivity to detecting a rela-
tionship between WMH volumes and cognitive measures in Aβþ and Aβ-
non-demented older adults.

2. Materials and methods

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lon
i.usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

2.1. Participants

We evaluated 260 non-demented participants, aged 55–90 years old,
from ADNI2 who had all of the following variables available: 1) 3T MRI
T1-weighted and fluid attenuated inversion recovery (FLAIR) images, 2)
cerebrospinal fluid (CSF) Aβ42 levels (described further in the ADNI
methods page http://adni.loni.usc.edu/methods/), and 3) neuropsy-
chological assessment. Both the CSF collection and neuropsychological
testing occurred within 18.5 months (average of 3.2 months and 27 days,
respectively) of the MRI scan. Four supplemental participants were used
for training of our in-house WMH intensity ratio method, and four
additional participants were removed after failing FreeSurfer segmenta-
tion quality control procedures. Demographic information is tabulated in
Table 1. Data analyzed in this study - including MRI scans, CSF amyloid-
β1-42 (Aβ42) levels, and neuropsychological test scores - were down-
loaded from the publicly available ADNI Image Data Archive (IDA; https
://ida.loni.usc.edu). WMH volumes assessed using one of the five algo-
rithms we evaluated - the intensity histograms algorithm – were also
downloaded directly from the ADNI IDA.

2.2. Neuropsychological testing and diagnostic criteria

Participants underwent ADNI baseline neuropsychological testing -
including tests of long-term and working memory, language, and exec-
utive function - within 3 months of their brain scan. Clinical diagnoses
were determined by ADNI as follows: probable AD is assessed according
to NINDS/ADRDA criteria (McKhann et al., 1984). However, to minimize
the contributions to cognition of neurodegeneration that is specific to
AD, our study included only participants with MCI (N¼ 162) and those
who were cognitively intact (N¼ 98). Participants diagnosed with MCI
did not meet the diagnostic criteria for dementia, but did report a
Aβþ
Controls MCI Total

44 73 117
74.68� 7.17 73.26� 7.64 73.79 � 7.47**
23/21 40/33 63/54
16.70� 2.47 16.40� 2.61 16.51� 2.56

105 1.47� 106� 1.51� 105 1.47� 106� 1.47� 105 1.47� 106� 1.48� 105

myloid groups (Aβ- vs. Aβþ) and within amyloid groups (control vs. MCI), across
sts. We evaluated sex using a χ2 test.
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memory complaint. MCI participants had objective memory loss as
measured by education-adjusted scores on the Wechsler Memory
Scale-Revised - Logical Memory II (WMS-Logical Memory II; Score� 8, 4,
or 2 for having completed 16, 8–15, or 0–7 years of education, respec-
tively). They also had a Clinical Dementia Rating (CDR) scores of 0.5
(with a mandatory requirement that CDR memory box score was 0.5 or
higher), an absence of significant impairments in other cognitive do-
mains, and preserved daily life activities. Cognitively intact controls did
not meet the diagnostic criteria for probable AD or MCI and had no
memory complaints. They had a Mini-Mental State Exam (MMSE) score
between 24 and 30, a CDR of 0, and scored higher than the
education-adjusted MCI thresholds listed above on theWechsler Memory
Scale-Revised - Logical Memory II scores. Participants were excluded if
they had a serious neurological condition, neuropsychiatric condition
(e.g., major depression, bipolar disorder, schizophrenia), or history of
brain injury. We used previously-validated ADNI composite scores for
executive function (Gibbons et al., 2012) and memory (Crane et al.,
2012). The normalized composite measures of executive function and
memory were derived from an iterative process that applied item
response theory and confirmatory factory analysis to previously acquired
ADNI neuropsychological battery (Crane et al., 2012; Gibbons et al.,
2012). The executive function composite score was derived from five
clock drawing items (circle, symbol, numbers, hands, and time), Trail
Making Test parts A and B, and Category Fluency (animals). The memory
composite score was derived from Rey Auditory Verbal Learning Test
(RAVLT), AD Assessment Schedule - Cognition (ADAS-Cog), MMSE, and
WMS-Logical Memory II.
2.3. MRI scanning

Participants underwent whole-brain MRI scanning on 3-Tesla scan-
ners across 51 sites in North America. Each participant was scanned using
an anatomical T1-weighted sequence (1.2mm thick sagittal slices;
0.9375� 0.9375mm2 in-plane resolution, 256� 256 matrix) and a T2-
weighted fluid attenuated inversion recovery (FLAIR) sequence (5mm
thick axial slices; 0.86� 0.86mm2 in-plane resolution). All MRI acqui-
sition sites passed rigorous scanner validation tests, and the scan pro-
tocols were optimized across sites and manufacturers (GE, Philips,
Siemens). A GE scanner was used to acquire MRI data on 61 participants
across 14 sites, a Philips scanner was used to acquire MRI data on 46
participants across 10 sites, and a Siemens scanner was used to acquire
MRI data on 153 participants across 27 sites. Detailed procedures on scan
acquisition and optimization are provided elsewhere (www.adni.lon
i.usc.edu). All T1-weighted and FLAIR images were visually checked
for quality. We did not perform bias correction on the FLAIR scans,
because 1) our visual quality control assessment did not find extensive
FLAIR field inhomogeneities, and 2) a recent analysis (Hernandez et al.,
2016) of bias correction performance on FLAIR white matter hyper-
intensity progression found that applying a bias field correction was not
recommended for FLAIR images. Although there are advantages of cor-
recting the magnetic field inhomogeneities seen in FLAIR, that study
found that bias field correction in this modality may result in distortion of
Fig. 1. Flow diagram illustrating the workflow of our method to segmen
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real hyperintensities with a specific expense of subtle intensity differ-
ences. No T1 or FLAIR image had artifacts that were severe enough to
interfere with structural or WMH segmentations. A board-certified
neurologist was part of process of reviewing the FLAIR images and
WMH algorithm development.

2.4. CSF collection and analysis

Participants underwent at least one lumbar puncture to obtain CSF for
assays of several biomarkers. The sample collection and analysis pro-
cesses are described in Shaw et al. (2009). Aβþ participants were defined
as those who had CSF Aβ42 levels less than 192 pg/ml, consistent with
prior guidelines (Shaw et al., 2009).

2.5. In-house WMH algorithm

We developed a semi-automated method to segment white matter
hyperintensities using both T1-weighted and FLAIR images (Fig. 1).

2.5.1. Creating white matter masks
White matter masks were used to exclude hyperintensities other than

WMHs from our segmentations. To create these masks, we performed
bias field correction on the T1-weighted scans using the Advanced
Normalization Tools (ANTs) N4 correction (Tustison et al., 2010). We
then submitted these bias-corrected images to FreeSurfer (version 5.3) to
obtain tissue-segmentation masks and intracranial volume estimation
(Fischl et al., 2002). FreeSurfer estimates intracranial volume (ICV) using
the known relationship between the ICV and the linear transform of an
individual brain to MNI305 template space (Buckner et al., 2004).
Because white matter masks produced by FreeSurfer may omit WMHs,
we constructed white matter masks by subtracting the gray matter and
CSF masks from the full brain mask. Rarely, WMHwere extensive enough
that they were contiguous with gray matter on the T1-weighted image.
When that happened, the intensity values were similar enough that
WMHs were included erroneously in the gray matter mask. We therefore
visually inspected and manually edited all WM masks to ensure that the
gray matter masks did not include WMHs. Each participant’s resulting
white matter mask was linearly transformed (6 degrees of freedom) to
the participant’s own FLAIR image using FMRIB’s Linear Image Regis-
tration Tool (FLIRT) in FSL (Jenkinson and Smith, 2001; Jenkinson et al.,
2002). This white matter mask in FLAIR space was then non-linearly
transformed to the FLAIR image using the ANTs symmetric image
normalization (SyN) method (Avants et al., 2008). We examined and
edited the white matter masks as needed in FLAIR space to ensure all
white matter (including WMHs) was included.

Next, for each participant, we constructed a mask of the peripheral
white matter alone (which is less likely to containWMHs) to calculate the
mean intensity for the WM that does not contain lesions. To do this, first,
we eroded a binary whole brain Montreal Neurological Institute (MNI
152) 1mm template brain mask by 63% (an arbitrary value chosen to
provide a mask that excluded peripheral white matter). We non-linearly
transformed this eroded template brain into each individual’s T1-
t WMH. The intensity ratio is defined as Minimum Intensity of WMH
Mean WM Intensity without WMH.

http://www.adni.loni.usc.edu
http://www.adni.loni.usc.edu


Fig. 2. Image on the left depicts the coronal view of the MNI lobe map atlas
from FSL 5.0.7 (maxprob-thr0-1mm). The image on the right depicts the lobe
map after we manually extended the boundaries of the lobes into the
white matter.
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weighted image using the ANTs SyN method. The eroded brain masks
were then non-linearly transformed into each participant’s FLAIR image
space using ANTs SyN and were subtracted from the participant’s com-
plete white matter mask in FLAIR space to create a mask that contained
only the brain periphery.

2.5.2. Segmenting WMHs
Our in-house WMH segmentation protocol is illustrated in Fig. 1 and

detailed here. First, we created a reference standard segmentation that
was visually similar to a manual segmentation in a sub-sample of four
training participants who had minimal WMHs on the FLAIR image. We
chose participants with minimal WMHs, because for these participants,
WMHs were clearly defined and unambiguous, and they contributed
minimally to the overall mean white matter intensity for that participant.
In our four training participants, we automatically identified WMHs by
applying a participant-specific intensity threshold at 99th percentile of
the signal intensity in the total white matter for each participant, using
the fslmaths function in FSL. We arrived at this 99th percentile threshold
by visually assessing which threshold adequately segmented these clearly
delineated lesions in our test participants. If we had included participants
having extensive WMH in this training set, their mean white matter in-
tensity would be low, because the WMHs themselves would reduce the
mean signal intensity in the WM mask. Therefore, in participants with
extensive WMHs, a 99th percentile intensity threshold would not
adequately identify WMHs. Once the WMHs were identified in these four
participants, we used their data to calculate a study-specific intensity
ratio that could be used to identify high intensity WMHs, even in par-
ticipants who also have more extensive and diffuse lesions. To calculate a
study-specific intensity ratio, across the four training participants, we
divided the mean minimum intensity of the WMHs by the mean intensity
of the normal-appearing white matter (excluding the WMHs). The voxel,
volume, and intensity information derived from the four training par-
ticipants is tabulated in Table 2. This resulted in a study-specific WMH
intensity ratio indicating how much greater the minimum intensity of
WMHs was compared with the mean intensity of normal-appearing WM.
We then obtained a participant-specific WMH map, by calculating the
mean intensity value of each participant’s FLAIR image within the pe-
ripheral white matter mask (see 2.5.1 Creating white matter masks) and
multiplied it by our study-specific WMH intensity ratio to obtain a
threshold, which we then applied to that participant’s original FLAIR
image.

2.5.3. Regional WMH segmentation
We investigated regional differences in WMH accumulation across

three lobes: frontal, temporal, and parietal outlined based on the MNI
lobe map atlas from FSL 5.0.7 (maxprob-thr0-1mm). To the extent that
the standard lobemap did not cover the entire white matter, wemanually
extended the lobar gray matter boundaries into the white matter, and
visually confirmed that the segmentations were accurate. Fig. 2 depicts
before and after we manually extended the lobar gray matter boundaries
into the white matter. The lobar masks were registered to each partici-
pant’s FLAIR space. This allowed us to calculate the WMH volume for the
Table 2
Voxel, volume, and intensity information from the participants used to calculate
the intensity ratio.

Training Set
Participant

WMH
Voxels

WMH
Volume

WMH
minimum
intensity

Mean
intensity of
WM without
WMH

Intensity
Ratio

1 1425 5262.30 536.65 395.29 1.36
2 1855 6850.22 551.40 404.26 1.36
3 2125 7847.29 579.15 405.49 1.43
4 1966 7260.14 553.34 366.39 1.51
Average 1842.75 6804.99 555.14 392.86 1.42

Mean volume is in mm3.
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frontal, temporal, and parietal lobes.
We also performed an analysis to separate periventricular and deep

WMHs. We did this by dilating the ventricle segmentation mask in the
participant’s FLAIR space by a sphere kernel of 5.16mm (6 voxels x
0.86mm resolution). Fig. S1 in the supplemental material illustrates
testing performed on the separation of periventricular and deep WMH
boundaries by kernel size. We multiplied the dilated ventricle mask by
the participant-specific WMHmap to construct the periventricular WMH
map. The deep WMH volume was calculated by subtracting the
participant-specific periventrucular WMH volume from that participant’s
full WMH volume. We performed quality control on each of the seg-
mentation masks to ensure that the individual mask’s boundaries were
accurate and the ventricular segmentation did not have artificial
enlargement.

2.5.4. Intensity thresholding
We next investigated how varying the inclusiveness of the WMH

masks (to include or exclude more diffuse signal surrounding hyperin-
tense lesions) affected the relationship of WMH volume to cognition. To
do this we created masks based on different percentages of the con-
structed intensity ratio. We calculated WMH volumes derived from
thresholding at 85%, 90%, 95%, and 105% of the intensity ratio. To
determine the new threshold for each percentage we multiplied the
percent by the unadjusted intensity ratio and applied the adjusted value
to the mean signal intensity in the peripheral mask. Lower threshold
percentages provided a more ‘lenient’ WMH map - that included more
diffuse lesions - while higher values included only the highest intensity
voxels in the white matter, often associated with more discrete lesions.

2.6. Existing white matter hyperintensity segmentation algorithms

We also evaluated howWMH volumes related to cognition using four
WMH algorithms other than our own: 1) an intensity histogram-based
algorithm (DeCarli et al., 1995); two algorithms that are part of SPM’s
lesion segmentation tool (LST): 2) the lesion growth algorithm (LGA)
(Schmidt et al., 2012) and 3) the lesion prediction algorithm (LPA)
(Schmidt, 2017) (http://www.applied-statistics.de/lst.html); and 4)
FSL’s brain intensity abnormality classification algorithm (BIANCA)
(Griffanti et al., 2016). We used the default settings of each algorithm.

1) The intensity histograms algorithm is the standard method used in
ADNI to calculate the WMH volume. This algorithm uses a Bayesian
probabilistic method to generate likelihood estimate values for WMH at
each voxel in the white matter. These likelihoods are thresholded at three
standard deviations above the mean to construct the binary WMH mask.
2) LGA was implemented in the LST toolbox, version 2.0.15 (http:
//www.statistical-modelling.de/lst.html) for SPM. T1-weighted and
FLAIR images were used as inputs. The algorithm selects an initial lesion
map and subsequently grows along voxels that are hyperintense relative
to surrounding tissue. 3) LPA was implemented in the LST toolbox,

http://www.applied-statistics.de/lst.html
http://www.statistical-modelling.de/lst.html
http://www.statistical-modelling.de/lst.html
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version 2.0.15, for SPM. We used only FLAIR images as input. The al-
gorithm is a binary classifier using a logistic regression model trained on
data from 53 participants with severe Multiple Sclerosis (MS). The model
covariates include a similar belief map used in the LGA algorithm above
and a spatial covariate that accounts for voxel-specific changes in lesion
probability. The fitted model parameters are implemented to segment
lesions of novel images by estimating the lesion probability across each
voxel, outputting a lesion probability map. 4) BIANCA was implemented
using FSL. We used a T1-weighted image, FLAIR image, and the same
training set as we used for our in-house algorithm. BIANCA classifies
each voxel based on intensity and spatial features to output the proba-
bility of that voxel being in a WMH. We used BIANCA’s default settings
and implemented the default probability map threshold of 0.9 (proba-
bility of a voxel being a WMH), which historically has optimized the
voxel WMH classification false positives and false negative detection rate
(Griffanti et al., 2016). We ran BIANCA both with and without including
as inputs the same individual WM masks created using our in-house al-
gorithm. Using a WM mask to exclude non-white matter has been shown
to reduce false positives (Griffanti et al., 2016).

2.7. Statistics

2.7.1. Amyloid group differences
We stratified the cohort by CSF amyloid level (Aβ-, Aβþ) and evalu-

ated demographic measures both within- and between-amyloid group. In
our within-amyloid group analyses, we assessed differences between
diagnostic groups (cognitively intact controls or MCI). We usedWelch’s t-
tests to evaluate group differences in age, years of education, and ICV,
and a χ2 test to evaluate group differences in sex.

We covaried for age, sex, years of education, and ICV in all subsequent
analyses. Adding scanner manufacturer as a covariate did not modify the
relationship between WMH volume and clinical diagnosis and did not
significantly contribute to our analyses, so we did not include manufac-
turer in the statistical models reported throughout the paper (Supple-
mentary Table S1). For all statistical models with a binary dependent
variable (such as diagnosis), we performed logistic regression. For all
statistical models with a continuous dependent variable (such as cogni-
tive composite scores), we performed multiple linear regression. We used
the composite cognitive measures available on the ADNI website. How-
ever, when we further evaluated the contribution to our effects of indi-
vidual neuropsychological subtests within the composite measures, we
used Z-score transformed values in our analyses. All statistical analyses
were performed in R version 3.5.1 (University of Auckland, Auckland,
New Zealand) (R Core Team, 2013).

2.7.2. In-house WMH analysis
We used logistic regression to test our hypothesis that total WMH

volume would be more associated with clinical diagnosis in Aβ- partici-
pants. To evaluate whether our results were specific to Aβ- participants,
we also used logistic regression to relate WMH volume to diagnosis in
Aβþ participants. WMH volume was significantly related to diagnosis in
Aβ- participants only. Therefore, all subsequent analyses presented here
were performed only in Aβ- participants. Additional analyses performed
in Aβþ participants can be found in the supplementary material
(Table S4, Table S5, Table S6, Table S7).

To further investigate our significant results in Aβ- participants we
examined whether regional differences in WMH accumulation (in the
frontal, temporal, and parietal lobes as well as periventricular (PVWMH)
and deep WMH (DWMH; regions across lobes) were associated with
clinical diagnosis and executive function and memory. We corrected for
multiple comparisons using the false discovery rate (FDR) approach, and
report FDR-adjusted p-values (Yekutieli and Benjamini, 1999).

We assessed whether changing the threshold of our in-house WMH
algorithm (i.e., including or excluding more diffuse, lower-intensity
voxels to WMHs) modified the relationship between WMH volume and
clinical diagnosis. To do this, we used logistic regression to test the
5

association in Aβ- participants between clinical diagnosis and WMH
volume calculated using different intensity ratios (at 85%, 90%, 95%,
and 105% of the original intensity ratio). We performed additional an-
alyses in segmentation methods that had an available threshold option
(LST LGA and BIANCA). Using both the LST LGAmethod and the BIANCA
method, we evaluated the relationship between WMH volume, derived
from varying thresholds, and clinical diagnosis in Aβ- participants
(Table S8 and Table S9; Fig. S2 and Fig. S3). Because peripheral (deep)
WMH may be less intense than periventricular WMH, we further inves-
tigated the relationship between deep WMH and diagnosis in Aβ- par-
ticipants with a more lenient threshold (85% of the intensity ratio) to
deep WMH, using our in-house method. We then related deep WMH
volume using the 85% intensity threshold to diagnosis in Aβ- partici-
pants. This analysis was meant to evaluate possible separate effects of
location and intensity of WMHs.

2.7.3. WMH segmentation comparison
To evaluate differences across WMH volumes derived from various

algorithms, we related WMH volume (predictor variable) calculated
using each of the five segmentation algorithms, to clinical diagnosis
(outcome variable), adjusting for age, sex, years of education, and ICV.
To test model differences between the WMH segmentation algorithms,
we performed a one-way ANOVA with pairwise comparisons, applying
FDR to correct for multiple comparisons.

2.7.4. Executive function & memory analysis
To assess whether WMH volume had any cognitive domain-specific

effects, we performed multiple linear regression to relate WMH vol-
ume, derived from the segmentation algorithm that detected strongest
associations, to composite scores of executive function and memory
(Crane et al., 2012; Gibbons et al., 2012). To further investigate any
significant findings between WMH volume and executive function and
memory, we evaluated the relationship between WMH volume and the
composite score subtests. In this neuropsychological subtest analysis, we
corrected for multiple comparisons by applying false discovery rate
(FDR) and reported FDR adjusted p-values (Yekutieli and Benjamini,
1999).

3. Results

3.1. Between and within-amyloid group comparison

In a within-amyloid group analysis, we found that in Aβ- participants,
cognitively intact controls were significantly older than those with MCI
(t¼ 2.850; p¼ 0.005). In Aβþ participants, no statistically significant
differences were found. When diagnosis was not considered, Aβþ par-
ticipants were significantly older than the Aβ- participants (t ¼ 2.941;
p¼ 0.004; Table 1). We controlled for age in all further analyses along
with sex, years of education, and estimated ICV.

3.2. Regional relationship to diagnosis

In Aβ- participants only, higher total WMH volume derived from our
in-house algorithm was significantly associated with worse clinical
diagnosis (z¼ 2.373, WMH volume partial p¼ 0.018). In this model,
higher age (z¼�3.417, partial p< 0.001) and lower educational level
(z¼�1.842, partial p¼ 0.065) were also significantly associated with
poorer clinical diagnosis. Additionally, larger frontal, parietal, and per-
iventricular WMH volume were associated with worse clinical diagnosis
in Aβ- participants (Table 3). Results from the total WMH and regional
analysis can be found in Table 3. In a follow-up analysis in Aβ- partici-
pants, we related regional WMH volume to executive function and
memory scores. None of the individual regions were related to executive
function (Supplementary Table S2) or memory (Supplementary
Table S3).

We performed a follow-up analysis to further identify regional



Table 3
Associations between in-house derived WMH volume by region and clinical diagnosis in Aβ- participants.

Region Controls MCI z-value Partial p-value FDR adjusted p-value

Mean volume� SD Median (IQR) Mean volume� SD Median (IQR)

Total 2839� 2684 2084 (943–3763) 4379� 6609 2145 (1118–4118) 2.373 0.018* –
Frontal 584� 893 262 (119–622) 1389� 2639 418 (139–1512) 3.057 0.002* 0.010*
Parietal 739� 866 456 (152–944) 1489� 3032 356 (149–1146) 2.303 0.021* 0.035*
Temporal 117� 135 61 (18–188) 144� 200 65 (26–183) 1.448 0.148 0.148
Periventricular 1940� 1706 137 (807–2720) 2823� 3353 1667 (797–3285) 2.727 0.006* 0.015*
Deep 899� 1445 352 (92–972) 1555� 3570 383 (124–945) 1.757 0.079� 0.099�

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. Multiple comparison correction
was applied to frontal, parietal, temporal, periventricular, and deep WMH volume analyses, using FDR adjusted values. Clinical diagnoses: MCI¼ 1; control¼ 0. SD ¼
Standard Deviation; IQR ¼ Interquartile Range.
*p< 0.05.
�p< 0.10, indicating a trend level association.
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specificity of periventricular and deep WM effects, and found that larger
WMH volumes in the frontal periventricular and parietal periventricular
regions were significantly associated with worse clinical diagnosis in Aβ-
participants (Table 4).

No significant associations were found between total or regional
WMH and clinical diagnosis in Aβþ participants. All analyses in Aβþ
participants can be found in the supplemental material (Table S4,
Table S5, Table S6, Table S7).

3.3. Intensity threshold modification

We next evaluated whether including less intense/more diffuse
WMH voxels in the WMH volume measure affected the relationship we
saw between WMH volume and clinical diagnosis in Aβ- participants.
We did this by adjusting the intensity ratio thresholds used to define
WMHs. In Aβ- participants, higher total WMH volume derived from both
the unadjusted WMH threshold (i.e., 100%) and the 105% intensity
threshold (which further excluded lower-intensity voxels) were signifi-
cantly associated with poorer clinical diagnosis (Table 5, Fig. 3).
Thresholds of 85%, 90%, and 95% of the original WMH threshold
included lower intensity voxels characteristic of diffuse lesions; WMH
volumes calculated using these more inclusive thresholds were not
significantly associated with clinical diagnosis (Table 5). For each in-
tensity threshold we tested, the covariate of older age was significantly
associated with poorer clinical diagnosis and lower educational level
attained had a trend level association with poorer clinical diagnosis.
Modification of thresholds using the LGA and BIANCA methods can be
found in the supplementary material (Table S8, Fig. S2, and Table S9,
Fig. S3). In a follow-up analysis we investigated whether applying a
more lenient threshold to deep WMH resulted in a larger relationship
between deep WMH volume and clinical diagnosis. We found that,
-when thresholded at 85% of the intensity ratio to allow the inclusion of
lower-intensity lesions, deep WMH volume still was not significantly
related to diagnosis (z¼ -0.307, p¼ 0.759).
Table 4
Associations between in-house derived WMH volume by sub region and diagnosis in

Region Controls MCI

Mean volume� SD Median (IQR) Mean volume�
Frontal Periventricular 470� 725 193 (78–538) 954� 1488
Parietal Periventricular 453� 423 373 (144–618) 774� 1217
Temporal Periventricular 93� 112 48 (10–141) 105� 152
Frontal Deep 114� 252 34 (8–109) 435� 1297
Parietal Deep 286� 593 40 (2–250) 715� 1989
Temporal Deep 25� 51 6 (0–27) 39� 77

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, a
was applied to frontal, parietal, temporal, periventricular, and deep WMH volume ana
Standard Deviation; IQR ¼ Interquartile Range.
*p < 0.05.
�p< 0.10, indicating a trend level association.
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3.4. Clinical associations detected by other WMH algorithms

Within our Aβ- group, we assessed the association between diagnosis
and total WMH volume. We did this using six logistic regression analyses,
one for eachWMH segmentation method: 1) our in-house intensity-based
algorithm; 2) a previously-published WMH segmentation based on
mathematical modeling of MR pixel intensity histograms (DeCarli et al.,
1995): and three methods freely available online - 3) LST - LGA (Schmidt
et al., 2012), 4) LST - LPA, (Schmidt, 2017), 5) FSL - BIANCA using an
optional WM mask as input, and 6) FSL – BIANCA without using an
optional WM mask as input (Griffanti et al., 2016) (Fig. 4).

In non-demented Aβ- participants, greater total WMH volume was
significantly associated with MCI diagnosis, calculated using four algo-
rithms: 1) our in-house algorithm (p¼ 0.018), 2) an algorithm based on
MR pixel intensity histograms (p¼ 0.001) (DeCarli et al., 1995), 3) LGA
(p< 0.001) (Schmidt et al., 2012), and 4) BIANCA using the optional WM
mask as input (p¼ 0.032) (Griffanti et al., 2016). Total WMH volumewas
not significantly associated with diagnosis using LPA (p¼ 0.086) or
BIANCA without using the optional WMmask as input (p¼ 0.088), using
the default options (Table 6).

We performed a one-way ANOVA with pairwise comparisons
(Table 7) to determine whether WMH volume was significantly different
across algorithms. We found that WMH volumes calculated using LPA
were significantly different from WMH volumes using all other methods.
Our in-house method, LGA, BIANCA (masked), and the intensity histo-
gram method did not provide WMH volumes that were significantly
different from one another.

3.5. Executive function and memory

For simplicity of presentation, in subsequent analyses, we used the
WMH segmentation method that produced the strongest association to
clinical diagnosis (LGA) to further evaluate the relationship between
WMH volume and cognition – specifically, neuropsychological composite
Aβ- participants.

z-value Partial p-value FDR adjusted p-value

SD Median (IQR)

351 (69–128) 3.252 0.001* 0.007*
298 (129–787) 2.440 0.015* 0.044*
44 (15–138) 1.177 0.239 0.239
54 (17–211) 1.907 0.057� 0.085�

39 (2–242) 1.931 0.053� 0.085�

8 (0–44) 1.327 0.184 0.221

djusted for age, sex, years of education, and ICV. Multiple comparison correction
lyses, using FDR-adjusted values. Clinical diagnoses: MCI ¼ 1; control ¼ 0. SD¼



Table 5
Associations between in-house derived total WMH volume and clinical diagnosis by intensity threshold in Aβ- participants.

Intensity Threshold Percentage (Ratio Number) Controls MCI z-value Partial p-value

Mean volume� SD Median (IQR) Mean volume� SD Median (IQR)

85% (1.207) 18206� 13717 14906 (7098–25585) 18524� 14935 14959 (8663–21507) 0.904 0.366
90% (1.278) 8830� 7714 6990 (3015–11760) 10145� 10898 6655 (3931–10841) 1.431 0.152
95% (1.349) 4750� 4324 3576 (1598–6191) 6426� 8417 3651 (1961–6329) 2.109 0.035
100% (1.42) 2839� 2684 2084 (943–3763) 4379� 6609 2145 (1118–4118) 2.373 0.018*
105% (1.491) 1799� 1831 1245 (563–2395) 3066� 5208 1338 (645–2781) 2.388 0.017*

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. Clinical diagnoses were coded as
MCI ¼ 1; control ¼ 0. SD ¼ Standard Deviation; IQR ¼ Interquartile Range.
*p < 0.05.

Fig. 3. WMH boundary segmentation based on varying intensity thresholds of the study-specific intensity ratio. The far-right image illustrates the 85%, 100%, and
105% threshold masks all overlaid on the base FLAIR image for comparison purposes.

Fig. 4. Range of WMH severity and variation in white matter segmentation methods. The severity was evaluated as WMH volume corrected for ICV. We defined mild
WMH volume in a participant, when the individual’s total WMH volume was less than the mean total WMH volume across participants. Moderate WMH volume was
defined as the individual’s total WMH volume being between the mean and two standard deviations above the mean across participants, and severe WMH volume
when the individual’s total WMH volume was greater than two standard deviations above the mean across participants. For BIANCA, “masked” indicates that the same
WM mask generated for our in-house algorithm was used as input for the analysis.
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measures of memory or executive function, although it is important to
note that LGA WMH volumes were not significantly different from those
calculated using the in-house, BIANCA (masked), or intensity histogram
algorithms, all of which were significantly associated with diagnosis
7

(Table 7). Using multiple linear regression, we found that greater LGA-
derived WMH volumes were significantly associated with lower execu-
tive function composite scores (omnibus p< 0.001; WMH volume partial
t¼ 2.33; p¼ 0.021). LGA-derived WMH volumes were not significantly



Table 6
Associations between WMH volume by segmentation method and clinical diagnosis in Aβ- participants.

WMH Segmentation Method Controls MCI z-value Partial p-value

Mean volume� SD Median (IQR) Mean volume� SD Median (IQR)

In-house 2839� 2684 2084 (943, 3763) 4379� 6609 2145 (1118–4118) 2.373 0.018*
Intensity histograms 3133� 2788 2340 (1359–4076) 5955� 8686 2713 (1243–6664) 3.231 0.001*
LGA 2658� 3478 1525 (575–3076) 5457� 8473 1864 (315–6903) 3.533 < 0.001*
LPA 20163� 19443 12338 (6713–28781) 20617� 21128 11772 (5057–30651) 1.715 0.086�

BIANCA (masked) 4272� 4063 2404 (1494–6386) 5442� 7020 2705 (1257–6564) 2.145 0.032*
BIANCA (unmasked) 14165� 5568 13610 (10209-17196) 16147� 8050 15285 (9845–20916) 1.705 0.088�

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. For BIANCA, “masked” indicates
that a WM mask was used as input for the analysis. Clinical diagnoses: MCI¼ 1; control¼ 0. SD ¼ Standard Deviation; IQR ¼ Interquartile Range.
*p < 0.05.
� p< 0.10, indicating a trend level association.

Table 7
One-way ANOVA with pairwise comparisons.

In-House Intensity
Histogram

LGA LPA

Intensity
Histogram

p¼ 0.66 – – –

LGA p¼ 0.78 p¼ 0.78 – –
LPA p< 0.001* p < 0.001* p< 0.001* –
BIANCA (masked) p¼ 0.66 p¼ 0.93 p¼ 0.78 p <

0.001*

p-values displayed are corrected for multiple comparisons using the false dis-
covery rate (FDR). For BIANCA, “masked” indicates that a WM mask was used as
input for the analysis.
*p < 0.05.
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correlated with composite memory scores (omnibus p< 0.001; WMH
volume partial t¼ 1.629; p¼ 0.106).

We further investigated our significant result to determine whether
certain neuropsychological subtests may be driving the association be-
tween LGA-derivedWMH volumes and executive function. We found that
greater WMH volume was significantly associated with lower Category
Fluency score (omnibus p< 0.001; WMH volume partial t¼ 3.12; FDR
adjusted p¼ 0.013). LGA-derived WMH volumes were not associated
with Trail Making Test Part A (omnibus p< 0.001; WMH volume partial
t¼ 1.96; FDR corrected p¼ 0.157) or Part B (omnibus p< 0.001; WMH
volume partial t¼ 0.79; FDR adjusted p¼ 0.516), or any of the three
clock drawing subscores: symbol (omnibus p< 0.001; WMH volume
partial t¼ 1.389; FDR adjusted p¼ 0.516); numbers (WMH volume
partial t¼ 1.389; FDR adjusted p¼ 0.330); or time (omnibus p< 0.001;
WMH volume partial t¼ 0.151; FDR adjusted p¼ 0.880). We did not
examine the relationship between WMH volume and the clock drawing
circle or hand scores test, as there was ceiling effect on these tests – on the
clock drawing circle subtest, all 143 of the Aβ- participants received a
perfect score and on the hand subtest, 142 of the 143 participants
received a perfect score.

4. Discussion

We investigated, in a sample of non-demented Aβ- older adults, the
most clinically relevant features of WMH boundary selection, by relating
WMH volume (using 5 different algorithms) to clinical diagnosis and
cognitive function. We found that 1) larger total, frontal, parietal, and
periventricular WMH volumes, derived from our in-house algorithm,
were significantly associated with a worse clinical diagnosis in Aβ- older
adults, 2) limiting WMH boundaries to voxels having the highest-
intensity thresholds strengthened the relationship between WMH vol-
ume and clinical diagnosis, and 3) the most clinically relevant WMH
segmentation algorithms (LGA, intensity histogram, our in-house
method, and BIANCA with the WM mask option) were methods that
limited boundary selection to the most high-intensity areas of the WMHs.
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Our study is the first to compare multiple WMH segmentation methods
using clinical diagnosis and cognitive composite measures to assess
clinical relevance.

We found a significant effect between WMH volume and diagnosis
only in Aβ- participants. Here, Aβ positivity may reflect AD-related
neuropathological changes more broadly, which may be associated
with cognitive effects, even in cognitively intact older adults (Braskie
et al., 2010; Amariglio et al., 2012; Ho and Nation, 2018). Variability
from such AD-related effects on cognition could add statistical noise to
WMH-related cognitive effects in Aβþ participants, making those effects
harder to detect. The relationship between cerebral amyloidosis and
WMHs is currently debated (Roseborough et al., 2017), although
emerging evidence indicates that Aβ and WMHs may have both inde-
pendent and interactive effects (Scott et al., 2016; Schreiner et al., 2018).
WMH accumulation in Aβ- participants may represent an increased
vulnerability to developing abnormal levels of Aβ later, although future
longitudinal studies are needed to clarify this possibility. Additionally,
the interaction between amyloid and WMHs may also make it more
difficult to detect an effect on cognition that is specifically attributable to
WMHs in Aβþ participants. It is possible that Aβ may interact with the
effect of WMH accumulation on cognition differently when evaluating
cohorts with a broader range of diagnoses, such as those with symp-
tomatic AD (Provenzano et al., 2013). However, within our cohort of
non-demented older adults, the effect of subtle increases in WMH volume
on cognition was only detectable in individuals without abnormal amy-
loid levels, suggesting that AD-specific processes may mask the effect of
WMH accumulation before clinical onset of AD. These findings are
consistent with our hypothesis that the relationship between WMH vol-
ume and clinical diagnosis is dependent upon both WMH boundary se-
lection and amyloid-positivity status.

We found that larger total, frontal, and parietal WMH volumes were
significantly associated with worse clinical diagnosis, while WMH in the
temporal lobe were not. We also found that periventricular, but not deep
WMH were significantly associated with clinical diagnosis, which is
consistent with past findings relating periventricular WMH to global
cognition (Kim et al., 2008; Bolandzadeh et al., 2012; Griffanti et al.,
2018). However, our study found trend level significance when relating
deepWMH to clinical measures. The ability to detect a robust effect could
be a result of small discrete lesions having a different intensity distri-
bution from larger lesions, with deep WMHs appearing lighter than
periventricular WMHs. Therefore, deep WMHs could be
under-segmented by various segmentation methods, resulting in peri-
ventricular WMHs appearing to have a stronger relationship to clinical
variables than deep WMHs. To test this, we performed an additional test
in which we used a more lenient threshold to segment less hyperintense
deep WMHs. We found that when we segmented the lighter regions of
deep WMHs, the relationship to clinical diagnosis became weaker, sug-
gesting that both the location and intensity of lesions are important to
clinical relevance. Periventricular and deep WMHs are both associated
with severe myelin loss and increased microglia activity (Simpson et al.,
2007), but may also have different etiological origins. Periventricular
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WMHs may be related to arterial pressure, plasma leakage, blood brain
barrier permeability, and decline in total cerebral blood flow, while deep
WMHs may be associated with axonal loss, arteriolosclerosis, and body
mass index (ten Dam et al., 2007; Haller et al., 2013; Wharton et al.,
2015; Griffanti et al., 2018). Although future work is needed to illumi-
nate the mechanisms of these findings, our work suggests that disruption
of global cognitive processes may be related to region-specific changes.

We found that WMH boundary selection was an important algorithm
feature that modified the degree to which logistic regression could cap-
ture the relationship between WMH volume and clinical diagnosis. The
WMH volumes calculated such that only the most hyperintense voxels
were included, were best associated with clinical diagnosis. We further
validated our intensity threshold findings by determining that the WMH
segmentation methods most associated with diagnosis (using default
settings) were the four algorithms that most limited WMHs to highest
intensity voxels (LGA, in-house method, the intensity histogram method,
and BIANCAwith theWMmask included as an input). The segmentations
that were significantly associated with diagnosis provided smaller WMH
volumes for the same scans. A visual review suggests that these seg-
mentations captured themost discrete and highly intense regions (Fig. 4).
Additionally, when we tested different thresholds for selecting voxels
using the three algorithms that allowed such adjustments, the thresholds
that resulted in smaller WMH volumes composed of the most intense
voxels were most closely related to clinical diagnosis. Our results suggest
that optimization of algorithm parameters to capture the most intense
WMH voxels will yield more robust classification results relevant to
clinical diagnosis.

Using only default options, the WMH volumes that resulted in the
largest volumes were derived from LPA and BIANCA without the WM
mask and were not significantly associated with clinical diagnosis. LPA
included lighter and more diffuse hyperintense regions in addition to
brighter, more discrete lesions. Using additional optional parameters for
LPA may have produced significant associations with diagnosis. BIANCA
without the optional WM mask provided WMH estimates that appeared
visually similar to the less inclusive in-house, histogram, and LGA
methods, but also included some non-white matter hyperintense regions,
such as in the cortex, cerebellum, and brainstem regions. Applying the
BIANCA option to input a white matter mask prevented the inclusion of
erroneous non-WM voxels in theWMHmap, andWMH volume estimated
using BIANCAwith aWMmask as input was significantly associated with
clinical diagnosis. We implemented each algorithm using the default
parameters to provide varying segmentation results among segmentation
methods allowing us to better investigate which WMH characteristics
were most clinically relevant. Our purpose was not to recommend any
one software package over another. Rather, our findings highlight the
importance of limiting the WMH search to white matter regions and
segmenting only the most hyperintense voxels, regardless of the algo-
rithm used.

In follow-up analyses of Aβ- older adults, greater WMH volumes were
associated with lower executive function composite scores. Although
previous literature relating WMH volume to cognitive function is vari-
able (Prins and Scheltens, 2015), mounting evidence demonstrates that
WMH volume has both broad and specific effects on cognitive function
(Hedden et al., 2012; Kloppenborg et al., 2014). Globally, WMHs have
been associated with future cognitive decline (Boyle et al., 2016),
impacting multiple neuropsychological domains (Gunning-Dixon and
Raz, 2000; Au et al., 2006). However, WMHsmost consistently have been
associated deficits in processing speed and executive function (Debette
et al., 2010; Murray et al., 2010; Kloppenborg et al., 2014; Lampe et al.,
2017), consistent with our current findings.

The association we found between WMH volume and executive
function was driven primarily by deficits in category fluency – a type of
verbal fluency test that here involves freely generating as many animal
names as possible within a set time period. Category fluency, a sensitive
marker for cognitive impairment, is impacted by frontal lobe WMH
accumulation (Gootjes et al., 2004), as it recruits both frontal and
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temporal lobe brain regions (Mummery et al., 1996; Gootjes et al., 2004;
Baldo et al., 2006; Peter et al., 2016). Although temporal lobe WMH
volume was not associated with category fluency measures, the effect of
WMH volume on category fluency may be attributed to disruption of
more global structural cortical connections, such as between the frontal
and temporal lobes (Wiseman et al., 2018).

Our study included data only from non-demented older participants,
and therefore may not be generalizable to participants with Alzheimer’s
disease and other diseases affecting the white matter, such as multiple
sclerosis. We related total and regional WMH volume to cognition in our
study, but did not evaluate how the number of total or regional WMHs in
each brain related to cognition. Such an analysis would be interesting and
may yield different results. Use of intensity threshold to calculate WMHs,
as in our method, may differently capture small and large lesions, as
small discrete lesions may have a different intensity distribution from
larger more diffuse lesions. We used a visual quality control assessment of
each WM mask, and manual editing as needed for accuracy. Because our
WM mask was created by subtracting the gray matter and CSF masks
from the whole brain on the T1-weighted images, editing was only
required when the WMH and gray matter, which have similar intensities
on the T1-weighted images, were contiguous, in which case, the auto-
matic segmentation may include WMH erroneously in the gray matter
mask. This was not a common occurrence in the ADNI cohort, whose
participants do not tend to have extensive WM pathology in the pe-
riphery. However, in a cohort that includes many participants with very
extensive WMH pathology, this manual editing step may be more time
consuming. Additionally, we used a limited set of open-source WMH
toolboxes which may not capture all the possible variability of WMH
boundary segmentations. These automated WMH segmentation methods
have optional parameters that use different variations of location and
intensity as inputs into either a linear or nonlinear classifier. We used the
default settings on the various packages in order to arrive at variable
segmentations, but optimization of these parameters may have resulted
in significant associations between the WMH segmentation volumes and
clinical diagnosis. Our intent here was not to evaluate the software
packages per se, but to determine what type of segmentation would be
most clinically relevant. Our converging results suggest that multiple
algorithms may generate useful segmentations.

Overall, our study sought to systematically assess automatic WMH
segmentations to identify the most clinically meaningful results. Our
findings suggest that WMH segmentations that exclude the lightest and
most diffuse hyperintensities have the strongest clinical relevance and
that this relationship is most evident only in Aβ- older adults. This sug-
gests that AD-specific processes, such as amyloid accumulation, may
mask the cognitive consequences of WMHs. However, evaluation of
higher intensity WMH volumes is a useful metric to classify global
cognitive function and assess domain-specific changes in executive
function in older adults. Our work is an initial step toward harmonizing
WMH segmentation protocols, allowing for more robust and reliable
investigations on howWMHsmechanistically relate to cognition and sub-
optimal brain aging.
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